
opualingmgsystenymg
UNIT -5

1/0 MANAGEMENT Eg
SECURITY

feedback/corrections : vibha@pesu.pes.edu VIBHA MASTI

1/0 MANAGEMENT

° Role of OS : manage and control Yo operations and 1/0 devices

• 110 devices vary greatly ; no easy way to manage all (keyboards,
hard disks etc.)

• Yo subsystem of kernel manages control over different 110
devices and their interaction with the rest of the system

• Separate from rest of kernel
• Yo subsystem uses device driver modules

• Device driver : abstraction of access to yo hardware via software for

kernel to interact with
, irrespective of hardware device (akin to

system calls for apps to interact with OS)

1/0 hardware

• Three major categories : storage devices
,
transmission devices

,

human interface devices

• Port: connection point where device connects to computer and
sends signals via

• Bus : set of wires Eg a protocol specifying set of messages that
can be sent across the wires

• Daisy chain : Device A plugged to device B plugged to device c

plugged to computer (operates on a bus)

A B C

computer

processor-memory
subsystem

• PCI bus connects processor
-

memory subsystem to fast devices and

expansion bus connects slower devices (USB and serial ports ,

keyboards)

• Four disks connected via Small Computer System Interface CSCSD

bus
, plugged into SCSI controller

• Other common buses to interconnect computer parts :
- PCIe : Pcl Express , throughput upto 16 GB per second
- HyperTransport : throughput upto 25 GB per second

CONTROLLER

• hardware that operates a bus/port / device

• Serial-Port controller is a simple device controller , which is a single
chip in the computer, that controls the signals on the wires of a

serial port

• SCSI controller more complex ; controller separate circuit board

called host adapter and consists of a processor, microcode

and private memory

• Bait - in controllers are present in disk drives as a circuit

board attached to one side
. They implement disk side of a

protocol such as SCSI or serial Advanced Technology Attachment
CSATA) and contain processor Eg microcode

communication b/w 1/0 Devices § CPU

• CPU writes control information to registers on yo device

controllers

(1) 1/0 Mapped 1/0
- Special yo instructions (IN/OUT)
- Flow of bytes /words in/out of 1/0 port addresses

16 bit addr > MO - Ib KB

" "" "° / " mem""Cpu > MI - 16 KB chips
2 : 4 MVX (64 KB)

7 M2 -16 KB
Ats) Address enhancedMSB { Aly > Decoder

address
n , M3 - 16 KB

space
yoor Ñ >

one additional bit for yo
> Port A

MSB { A /5 > AddÑess
A 14 > Decoder > port is } YO devices

(mouse
,

enhanced address 2 Port c printer,monitor)
space Game 2 bits)

> Port D

(2) Memory mapped 110
-

Registers viewed as extension of addressible memory
space

- Device registers mapped into physical address space
- No specific yo infractions CIN/OUT)

16 bit addr > MO - Ib KB

i A- 15 - AO 3 memory
CPU

chips
> MI - 16 KB

g. ↳ mux } egg µ,
A- 15 1 Address

MSB { A ,y > Decoder

>
M2 -16 KB

✓
> Port A

A- 13 > Address

Yo devices
Alz 7 Decoder > Port B } cmouse

,

> Port c printer,monitor)

> Port D

• Some devices use both 110 mapped and Memory mapped 40
(graphics controllers)

•

Memory mapped 110 runs the risk of accidental modification

by incorrect pointers; can be solved by protected memory

Registers at yo Ports

1. Data- in Register: read by host to get input

2. Data- out Register : written into by host to send output

3. Status Register : bits that can be read by the host (whether

current Command completed, whether byte available to be read
from in data- in register , whether device error occurred)

4. Control Register: bits than can be written by the host to

change the mode of the device or to start a command tenable)

•

Typically 1-4 bytes in size

• Some controllers expand capacity with FIFO chips (buffer)

Device yo port location on Pcs

POLLING
• Method of performing 1/0 used by host (also called busy -waiting)

• Device controller's status register's busy bit indicates the state of
the yo device as either busy CD or idle co).

• Host sets the command-ready bit in the DMA controller's command

register when a command is ready for the device controller to

execute

• Handshaking between host Eg device controller for writing output :

1. Host keeps reading status register 's busy bit until it is clear

2. Host sets write bit in command register § writes bit to data-out

register
3. Host sets command- ready bit in command register
4. When controller notices command- ready bit is set

,
it sets the

busy bit
5. controller reads command register and sees the write command

6. Controller reads data- out register to get the byte and performs
yo on the device

7. controller clears the command - ready bit
,
error bit in the status

register and clears the busy bit

• Handshake loop performed on every bite of data to be written

• step 1 : host is busy-waiting or polling the status register's busy bit

•

Many cycles wasted even though basic polling operation is efficient

and requires only 3 cycles

• Better if hardware controller notifies CPU when it is ready for
service Command)

interrupts

• Hardware controllers notify CPU when they are ready for service
via interrupts

• CPU senses interrupt service line (ISL) wire after executing
every instruction

• If ISL asserted
,
CPU performs save state

,
executes interrupt

service routine (ISR) from fixed memory location and then performs
a state restore

, returning the CPU back to its pre - interrupt state

• Device controller raises an interrupt , CPU catches it and dispatches it
to the interrupt handler, and the handler clears the interrupt by

servicing the device

• Required features of interrupt - handlers

1. Ability to defer interrupt handling during critical processing
2. Way to dispatch correct interrupt handler for a device without

polling all devices

3. Multilevel interrupts based on priority thigh , low)

° Provided by CPU and interrupt- controller hardware

• Two interrupt service lines : non-masKable cannot be turned off by
CPU before running critical code

,
and Mashable

° Interrupt mechanism accepts address (offset in IVT) that selects

interrupt routine

° Interrupt vector table contains memory addresses of specialised
interrupt service routines

• Interrupt chaining: entry of IVT points to head of another Cmulti -

level indexing)

• Interrupt priority levels for high Eg low priority interrupts

• Interrupt mechanism also used for handling exceptions , virtual

memory paging , system calls (trap or software interrupt)

•

Traps given lower priority than device interrupts

• When system call made
, interrupt hardware saves the state of

user code
,
switches to kernel mode

,
and dispatches to the kernel

routine that implements the requested service

DIRECT memory ACCESS

• Expensive for CPU to watch status bits and feed data into a

device controller's registers (programmed 110 PIO one byte at a
time)

• Special purpose processor DMA controller

• DMA transfer

1. Host writes DMA command block into memory (contains pointers
to source and destination of transfer and a count of number

of bytes to be transferred)

2. CPU writes address of this command block to the DNA controller

3. DMA controller operates the memory bus directly and performs
transfers without CPU

HANDSHAKING BETWEEN DMA CONTROLLER 4 DEVICE CONTROLLER

• Performed via DMA Acknowledge and DMA Request wires

memory

✗ ^

I{ DATA BUS
1

yoDMA

ADDRESS BUS > Device
controller

DMA ACKNOWLEDGE
y controller

<

DMA REQUEST

• steps :

1. Device controller places signal on DMA Request wire CDRQ) when

device is ready to transfer a word of data

2. DMA controller sends a hold request to the CPU
, asking it to

stall for a few cycles CHLD) . CPU acknowledges this request CHLDA)

3. DMA controller siezes memory bus , places desired address on the

memory -address wires and places a signal on the DMA Acknowlege
wire CDACK)

4. Device controller transfers word of data bytewise to memory via

memory bus and removes DMA Request signal

5
. When transfer complete, DMA controller interrupts the CPU

signalling end of transfer

• When DMA controller seizes control of memory bus , CPU cannot

access main memory can still access caches)

• Process called cycle stealing 4 overall performance due to using DMA

controller is improved

Protected kernels

• Processes cannot directly issue device commands
, protecting data

from access - control violations and preventing system crash

• OS exports functions that privileged processes can call to

access device

Non - Protected kernels

• Processes can access device controllers directly

•

High performance, low system security

DMA DATA TRANSFER MODES

1. Burst or Block Transfer Mode
- fastest DMA mode

- transfers all N bytes of data in a single burst
- for N cycles , processor disconnected from system bus

- DMA sends HLD signal to CPU to request for memory bus and

waits for HLDA signal
- after HLDA

,
DMA siezes control of memory bus and transfers N

bytes byte -by-byte
- after completion , disables HLD and releases memory bus

2. Cycle stealing or Single Byte Transfer Mode
- slower than burst mode

- after HLDA
,
DMA siezes control of system bus and only transfers a

single byte (executes one DMA cycle)
- after single cycle, disables HLD signal and CPU regains system bus

- DMA controller needs to request system bus control for next byte
- DMA controller steals clock cycles from CPU to transfer every byte

3. Transparent or Hidden mode
- slowest mode

- DMA controller siezes memory bus when CPU does not require
bus

-

processor speed unaffected

HLDA
]

Cpu <
HLD

DMA Controller

c. ÷
n n

110 DRQ DACKWR

MRW v v

<

Memory y, D 110 Device

KERNEL -1/0 SUBSYSTEM

1. YO scheduling
° Order of execution of yo requests
•

eg: optimise disk reads order

• wait queue of requests for each device maintained by OS

• When app issues a blocking YO system call
, request added to queue

for that device

• 1/0 scheduler reorders queue entries to improve efficiency
• Unit 4 disk scheduling CFCFS

,
SSTF

,
SCAN

,
C-SCAN

,
LOOK etc .)

• OS might attach wait queue to device status table , managed by
kernel

• Table entry : device type, address, state Crequest details if busy)

2. Buffering
• Buffer : memory area storing data to be transferred between two

devices / a device and an app

• Done for three reasons

d) Speed mismatch between producer 9 consumer Cdevices / apps)
Lii) Device transfer size mismatch

Liii) To maintain copy semantics

• Copy semantics for application yo : version of data copied onto
a disk is guaranteed to be the version of application data at the

time of application system call regardless of subsequent changes
-

App data copied onto kernel buffer before control returned to

app

• Double buffering: two buffers allocated so that one buffer may fill

up with data while the other buffer can write onto disk

-

Decouples producer by consumer
- Once buffer full

,
it writes to disk while incoming data fills other

buffer

° Device transfer rates clog) for Sun Enterprise 6000

3. Caching
• cache : region of fast memory holding copies of data

• Buffer may hold the only copy of data whereas cache always
holds copy

• Sometimes same region of memory used for both buffer 4 cache
- buffers in main memory for disk Yo
- also used as cache

• Disk writes accumulated in buffer cache for several seconds

4. Spooling
• Spool : buffer that holds output of a device that can only service

one job at a time

•

Eg : printer can only print for one file at a time ; each app 's

output spooled to separate disk file

• Spooling system queues spool files to printer one at a time

5. Device Reservation

• Exclusive device access allowed

• Process can allocate 4 deallocate idle devices

• Some Oses limit number of open file handlers to one

• Upto applications to avoid deadlock

ERROR HANDLING

• OS can usually recover from transient failures
- disk readc) fail results in readc) retry
- network sendc) errors result in resendC)

• If permanent failure of important component occurs , OS cannot

recover

• yo system calls return one bit of information regarding status
of call (success / failure)

° UNIX : integer errno returned , each corresponding to error code

° Failure of SCSI (small computer system Interface) device reported by
SCSI protocol in three levels of detail

- Sense key : nature of failure

- Additional sense code : category of failure
- Additional sense code qualifier: more detail

1/0 PROTECTION

• To prevent illegal Yo from being performed , all 110 instructions

are privileged instructions

° 1/0 must be done via system calls that request 0s to perform Yo

° Memory-mapped and 110 mapped yo locations must be protected from
users by memory protection system

• System call for 1/0

Kernel Data structures

• Kernel keeps state information about use of 110 components leg:

open file table structure
,
network connection tables etc .)

• UNIX : objected oriented technique ; pointers to appropriate routines
for entries in open file table

• Windows : message passing technique Cextensively object oriented)

transferring 110 Requests to Hardware operations

• For disk access
, mapping between file names and physical location

on disk

° MS- DOS and Windows : first part of filename . preceding the colon , is
a string identifying specific hardware device

- Eg: C : usersIPESUIDesktop test . txt
- Colon separates device namespace from file namespace

/proc/devices

/dev

- C : represents primary hard disk
, mapped to specific port address

through device table

• UNIX : device names represented in regular file system namespace
- no part of path name contains device name

- Mount table maps prefixes of path names to device names

- To resolve path name , OS looks for longest matching prefix on Mount
table

- The name obtained from the Mount table is looked up on the file

system directory structures and a <major , minor> pair of numbers
is returned

-

major : number identifies device driver to handle 40
- Minor : passed to device driver to index into a device table to

obtain address of device controller

source : IBM

- Linux : check devices by reading
- All devices stored in directory with major G minor numbers

00
I luminor
major

LIFE CYCLE of BLOCKING READ REQUEST

1 . Process calls blocking read1) system call to fd of an open file

2 . If data present in buffer cache, data returned to process and

110 completed

3. If not
, process moved from run queue to wait queue of device and

waits for 1/0 Subsystem to send request to device driver (to perform
1/0)

4. Device driver allocates kernel buffer space to receive disk data

and schedules 110 ; driver writes into device control registers

5. Device controller operates device hardware to perform data transfer

6 . If using DMA controller
, interrupt sent to CPU when transfer is

complete

7. Correct interrupt handler from IVT handles interrupt and returns
from interrupt

8. Device driver receives signal, checks to see which yo request completed
and signals kernel 110 subsystem that it has completed

9. Kernel transfers data
,
return codes to address space of requesting

process and moves process back to ready queue

10. Process unblocked and execution resumes from after system call

when scheduler assigns job to CPU

PROTECTION

• Mechanism for controlling access of programs , processes Eg users on files
,

memory segments and CPU of a system

goals OF protection
• Prevent violation of access restriction by a user
• Processes only use those system resources that they are allowed to
• Mechanisms to implement policies that guard resources

Principles of protection
°

Guiding principle : Principle of least Privilege programs, users Eg
systems given minimum privileges required to perform their tasks

• Minimum damage if misused

• Implementation possibilities
- Apps with fine-grained access controls

- Audit trails to track protection q security activities
- Role - based access control CRBAC) for users

- Access control lists where access can be toggled

• Grain of access

- Fine-grained access more secure
,
more tedious

- Rough- grained privilege management easier

Domain of Protection

° Process must only access resources it is authorised to access as well

as resources it requires to complete the task (need - to -know principle)

° If a process invokes a procedure, the procedure must only have
access to its local variables and the arguments passed to it , and
not the process

'

variables

• Every process operates within a protection domain that specifies the

resources the process can access

• Each domain is a collection of access rights , which are ordered pairs
of the form <object -name, rights- set >
- Eg: domain D has access right < file F

,
{ read

,
write} >

• Processes can be associated with domains statically or dynamically
(more complicated than static)

• static association may lead to violation of need - to -know

principle

• Dynamic requires domain switching ; domains can be realised in

different ways
1. User domain switch when user changes
2. Process domain switch when process sends message to another

process and waits

3. Procedure domain switch when procedure call made

• standard dual mode Cmontior- user mode) of OS execution

- Monitor mode : privileged access

- User mode : non-privileged access
- insufficient modes

i. Domains in UNIX

• Each user is a domain

• Each file has associated with it an owner and a setuid bit

° Domain switching : temporarily switching user ID when executing a

file ; if setuid is set
,
the user temporarily changes to be the

owner of the file until the process exits

• Alternate approach: place privileged programs in special directory ;
OS changes user when executing files here

• TOPS -20 OS : does not allow user ID change; user must send request
to privileged daemon running as root

2. Domains in MULTICS

° Protection domains organised hierarchically into a ring structure

• Domains : Do
,
D
, ,

. . -

, DN- , for N rings where Do has the most

privilege and Dn - , has the least

•

Rings numbered from 0 to 7 cN=8)

• If N=2
,
monitor- user mode where monitor = Do

• MULTICS has segmented space where each segment is one file

and is associated with one of the domain rings
- Each seg also has 3 access bits for reading, writing, execution
-

Ring field of segment includes
d) Access bracket Cb , , bz) such that bi < bz

di) Limit bz Such that bz > bz

iii> List of gates

° Each executing process has current - ring- number counter set to i ;
process can access segments associated with rings Ksi where the

type of access is determined by the rwx bits

• Domain switching : calling process in different ring

• If process calls procedure/ segment with access bracket Cb
, , bz) , then

the call is allowed if b
,
Li < bz and current ring number remains i

• Otherwise
,
a trap to the OS occurs

- if i < b
,
then call allowed to occur as transfer to be made

to ring with lower privileges , provided parameters that are

passed to a lower numbered ring are copied first

- if i > bz , call only allowed if bzzi and call has been directed

to a designated entry point / gate

° Ring structure does not enforce need -to - know

ACCESS MATRIX

• Protection viewed abstractly as matrix where rows → domains and

columns → objects

• Each entry Access Ci
, ;) contains set of access rights

° Domain switching: add domains as objects (columns) ; switching
from domain Di to Dj is allowed if switch C- Access CDI

, Dj)

•

changing entries of access matrix in a controlled manner : three

operations copy , owner, control

d) Copy
- the ability to copy access rights from one domain Crow) to

another for the same object is denoted by an asterisk (*)

appended the access right

- Eg: Ca) can be modified to (b)

(a) (b)

- transfer : if a right is copied from Access Ci
, j) to Access Ckij) ,

it is removed from Access Ci ,j)

-

limited copy: new copy does not get an asterisk (*) and is not

copyable

di> Owner

- addition 4 removal of some rights

- if Access Ci
, ;) contains owner as a right, then a process

executing in Di can add / remove any right in any entry of
column j

- Eg: Ca) can be modified to (b) domain D
,
is the owner of

F, and domain Dz is the owner of Fa GF, and they can

add/ remove rights in their respective columns (f , for D, and

Fz Ee Fz for Dz)

(a) (b)

Liii) Control

- applicable only to domain objects

- if control C- Access (D; , Dj) , then a process executing in Di
can remove any entry from row Dj

- Eg: Ca) can be modified to (b) process executing in Dz

can modify Dy

(a)

(b)

• Access matrix does not solve confinement problem (preventing process
from taking disallowed access)

IMPLEMENTATION of ACCESS RIGHTS

1. Global Table

• Set of ordered triples <domain
, object , rights- set >

° Simplest implementation

° Whenever operation M executed on object Oj within domain Di
,
the

global table is searched for < Di , Oj , Ru> where ME Rn

• If triple found, operation allowed to continue. Otherwise exception
raised

° Drawbacks

- table too large to be kept in main memory
- difficult to group object /domains ceg: access to everyone requires
new entry in all domains)

2. Access Lists for Objects

• Each column of the matrix can be implemented as an access list

for an object

• Each object is a list of pairs <domain
, rights-set>

• Can be extended to have an entry for default set of access rights

• Whenever operation M executed on object Oj within domain Di ,
access list of Oj searched for <Di

, Rn> such that MERK

• If entry found , operation performed .
Otherwise

,
default set is

checked . If M E R
default , performed . Else , exception raised.

3. Capability Lists for Domains

• Each row of matrix represented as list of pairs <object , rights-set>
(each pair called access capability)

° Object represented by its physical name /address

• Whenever operation M executed on object Oj within domain Di , the

capability for the object is specified as a parameter

• Possession of the capability means access is allowed

• capability list never directly accessible to processes running in that
domain ; it is a protected object maintained by OS and indirectly
accessed by user

• Protection of capability list is ensured in one of two ways

d) A tag bit is associated with each object to specify if it is

capability or accessible data . The tag is not accessible by apps

and is only accessed by OS (usually more than one bit for extra

hardware information)

di> Address space of program split into two parts one containing
normal program data 4 instructions (accessible to program) and

one containing capability list (accessible to OS)

4. Lock- key mechanism

• Each object has a list of unique bit patterns called locks

• Each domain has list of unique bit patterns called keys

• Process executing in a domain can only access those objects for
which the domain possesses a key Cthat matches the lock?

• List of keys managed by OS

comparison of implementations

• Global table simple but large , cannot easily add special groups
of objects or domains

• Access lists correspond directly to user needs ; at the time of

object creation, user can specify which domains can access and

what operations . However, determining set of access rights for a
domain is difficult

•

capability lists useful for local ising info about a process , but

do not correspond to user needs 4 revoking access is not simple

• Lock- Key mechanism revoking is easy (changing locks) , keys can
be passed freely between domains

ACCESS CONTROL

• Solaris 10 Role Based Access control CRBAC)

• Privileges assigned to users and processes following the principle
of least privilege

• Users assigned roles / can take on roles based on passwords to the

roles leg: Sudo commands)

Revocation of Access Rights

• Questions about revocation

d) Immediate vs delayed if delayed , when does revocation take place
lii) selective vs general does revocation affect all users or a group
Ciii) Partial vs total all rights to an object or a subset
in Temporary vs permanent is revocation permanent

• Revocation in lists simple; access list searched for domain and

access removed from access -rights set (can be immediate
, general or

selective
, partial or total , permanent or temporary)

° Revocation in capabilities - schemes must include the following

1. Reacquisition
- if process wants to use a capability that has been deleted

during periodic deletion from domains
,
it can try to reacquire

the capability
- if access revoked

, process cannot reacquire

2. Back- pointers
- each object contains list of pointers to capabilities
- when revocation required , pointers can be followed and

capabilities modified
- costly implementation (MULTICS)

3. Indirection

- capabilities point to unique entry in global table which points
to object Cindirect)

- revocation performed by deleting entry from global table
-

no selective revocation

SECURITY PROTECTION

Basic Provides the system access
to legitimate users only

Controls the access to
system resources

Policy Describes which person is
allowed to use the system

Specifies what files can be
accessed by a particular
user

Type of Threat Involved External Internal

Mechanism Authentication and
encryption are performed

Set or alter the authorization
information

4. Keys
-

key is unique bit pattern associated with a capability
- Defined when capacity created
- Process that owns key cannot modify / inspect it
- Technique # 1 master key

• Each object has a master key
° When capacity created , key is master key
• When capability exercised, if key = master key , it is allowed .
'

Else
, exception

• Revocation : change master key with set - key
• No selective revocation

-

Technique # 2 global table of keys
• All keys on global table of keys
. capability valid if its key matches some key on the global
table

• Revocation : remove matching key from table

- More flexible revocation

-

Policy decision : who can modify object keys

SECURITY

• System is secure only if only its resources are used and accessed as

intended

° Security violations maybe intentional (attacks from intruders or crackers)

or accidental easier to protect against)

• Threat : potential for violation; a vulnerability

security Violations
1. Breach of confidentiality

• unauthorised reading / stealing of data/ information

2. Breach of Integrity
• unauthorised modification of data

3. Breach of Availability
• unauthorised destruction of data

4. Theft of service

• unauthorised use of service

5. Denial - of - service
• preventing legitimate usage of system (networking: SYN flooding)

security violation methods

1. Masquerading
• attacker prentends to be someone else
• breach authentication and gain access

2. Replay attack
• malicious repeat of a valid data transmission
• illegally obtain information / resources
• can be done with message modification for more access

source : Wikipedia

3. Man - in - the- middle attack

• attacker sits in data flow of communication

• masquerades as receiver to sender and sender to receiver
• in networking: preceded by session hijacking

SECURITY MEASURES

1. Physical level
• data centres / computer sites must be physically secure against
unauthorised entry

2. Human Level

• authorised users should have access to system
• phishing : risers tricked into revealing confidential information
° dumpster diving: searching trash for sensitive data

3. 0s Level

• OS must protect itself from breaches CDOs attack , stack overflow

etc .)

4. Network level

• protection from interception of data over communication links

PROGRAM THREATS

•

Programs written to create security breach
• common methods to cause security breach

1. Trojan Horse
• code segment that misuses its environment
• Misuse ability of users to execute programs written by other users
• search path : list of directories to search when program name

given
• variation : program emulating login prompt
• Variation : spyware comes bundled with user- installed software
• Spyware creates ads, popups, captures user information and sends

to central server

• covert channel : attack that allows transfer of information between

processes that are not allowed to communicate ceg: spam email)

2. Trap Door
° Intentional hole in the software written by the designer of a

program that only they can access for their benefit
• Eg: banking program with rounding errors that credit the
extra money to the attacker's account

• Compilers generating trap doors hard to detect

#include <stdio.h>
#define BUFFER_SIZE 256

int main (int argc, char *argv[]) {
 char buffer[BUFFER_SIZE];

 if (argc < 2) {
 return -1;
 }
 else {
 strcpy(buffer, argv[1]);
 return 0;
 }
}

strncpy(buffer, argv[1], sizeof(buffer)-1);

3. Logic Bomb
• malicious code intentionally inserted into a program
• Activated on host only when certain conditions met
•
" Explodes

" after condition
,
such as termination of employee , met

4. Stack and Buffer overflow

• Exploits a bug in a program and sends excess data to the

program
• Steps taken by attacker

1. Overflow input field , command-line argument or input buffer
until it writes onto stack

2. Write exploit code with commands execute as part of the

attack

3. Overwrite current return address on stack with address of

exploit code

° Potential buffer overflow exploit : if argv[I] 2 BUFFER- SIZE

• Solution : use strncpycdest , source , size)

#include <stdio.h>

int main(int argc, char *argv[]) {
 execvp(“\bin\sh”,”\bin \sh”, NULL);
 return 0;
}

° Possible security vulnerabilities in stack overflow stack structure

known Ee return address can be changed

} → local variables

typical stack frame

• Program written by attacker that runs shell program

• If user program runs with system-wide permissions , attacker

code can be run maliciously

5- Viruses

• Fragment of code embedded in a legitimate program
• Self - replicating
• PCs more susceptible than UNIX -based systems
• Virus dropper (can be Trojan House) injects virus into system

•

categories of viruses

(a) File virus
- virus appended to a file of executable code

- changes start of a program so that virus code executed

- after execution
,
returns control to program

- can go unnoticed

(b) Boot virus

- infects boot sector of system 4 executes every time system
is booted

,
before 05 loads

- do not appear in file system
- also called memory virus

(c) Macro virus

- written in high- level language
- triggered when a program C like word

, Excel) that

executes macros automatically is run

(d) Source code virus

- looks for source code Ee includes virus in it

(e) Polymorphic virus
- changes virus signature each time it is installed
- avoid detection by antivirus

(f) Encrypted virus

- avoids detection

- virus decrypted by its decrypted code before execution

(g) Stealth Virus
- modifies parts of system that can be used to detect virus

-

eg: modify readC) system call to display non- infected code

4) Tunnelling virus
- bypasses detection by installing itself in interrupt handler
chain

d) Multipartite virus

- able to infect multiple parts of system

4) Armoured virus
- coded to make it hard to understand by antivirus

System Y Network THREATS

• To reduce threat
, system's attack surface to be reduced

• Oses strive to be secure by default , where most services must

be explicitly enabled by users

1. WORMS

• Program that duplicates itself

• 1988
,
Morris worm made up of grappling hook (also called vector

or bootstrap) program and the main program .

• Grappling hook connected to origin machine and copied main

program onto hooked system

• Exploited rsh (remote access)
, finger Ctelephone directory) and

sendmail csends
,
receives

,
routes email) programs

• Utilised password guessing to break into multiple user accounts

• 2003
,
sobig worm spread via email and attacked Windows

systems

2. PORT SCANNING

• Not attack ; means for cracker to detect a system's vulnerabilities

to attack

• Automated attempt to connect to TCP/IP ports on a range of

IP addresses

°

nmap can determine 0s
, running programs etc.

° Port scans are detectable; run from zombie systems systems
that have already been compromised by hackers q used as a

remote host by them

3. DENIAL- OF - SERVICE

• Disrupting legitimate use of a service

• Eg: SYN- flooding for initiation of sockets for TCP connection

with fake source IP addresses

• Distributed DOS attacks even harder to detect 4 use zombies

as multiple sources

• Authentication blocking by multiple wrong passwords

